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stationary axially-symmetric electrovac fields with
reflectional symmetry
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186, Canada
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Abstract. The Einstein-Maxwell equations for axially-symmetric stationary fields are
investigated. The existence of a class of solutions having reflectional symmetry is predicted
and examples are given.

1. The field equations and introduction

We study the Einstein-Maxwell equations for axially-symmetric stationary systems in
the two forms given by Bonnor (1973) and Ernst (1968). We write the metric in the
form

ds’=—e* (dz°+drd)—f1F da’+f(dt—w de)’. (1

Allfunctions in this paper depend on z and r only. The electric and magnetic potentials
zedenoted by ¢ = A, and ¢ = A%, respectively. The four functions ¢, ¢, w, f are to be
found either from the four equations

VA= (ot + falha) + 1 f(wa1— w1 $2) (2a)
Vg = (fid1+Fad2) + 1 f(witha— wathy) (2b)
Vow=2r " wy = —2f (fywi + fawo) + 41 (12— ¥adr) (2¢)
Vi=f U+ =21+ a3+ vl HeD -1 wi+wd) (2d)

Where

82 52 18
Zna )= V= (—+—+— —),
(z,1, 0, t)=(x1, X2, X3, Xa) and 322 9 ror

from the two complex Ernst equations
(Re E+|F)V’F=(VE+2F*VF) .VF (3a,b)

(Re E+|F)V?E = (VE +2F*VF) .VE (3¢,d)
¥here

Vs(i —), §E¢+i¢ (i=v-1)
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and E is another complex function, linked with ¢, ¢, w, f. After (2) or (3) are solved, )
obtained from Ais

Ay= ~f it of Hfifa =4 (b1 Yndha) — fblfzwlw2 (¢a)

o= ot (B D+ 20 (G2 = b3+ -y +Er T (W — ), )
In order to find solutions of (2) or (3), it is customary to make simplifyin
assumptions. To assume, for instance, that the four functions occurring in 3) ajg
functions of r* + nz” reduces (3) to a system of ordinary differential equationsif and only

it n=0, 1 or —2. In this paper we make assumptions which reduce the number of
equations and urknown functions from four to three.

2. Simplifying assumptions

Theorem A. If the equations

w(z,)=w(—z,7r1) )
flz,n=f(=21) (58)
¢z, 1)=y(-2,7) ¢z, 1)=¢(-2z1) (5c)

are satisfied, and if -(2a) is satisfied at (zy, 7, a3, %) then (2b) is satisfied at
(= 2z, @1, 11, 1;).- Equation (5¢) allows us, at least in principle, to express ¢ in terms of §
_and we have thus three equations (2a,c,d) for the three unknowns ¢, w, f. The proofis
simple. By (5a) we have that w is an even function of z, hence wy is odd and w, iseven
in z; and the same applies to f. Similarly

¢(Za r) = lﬁ(_Z, r)$ ¢1(Za I‘) = '—wl(_Z’ 7’), ¢2(Z, I') = ‘102(—2" )’), etc.

Calculating (2a) for z =z, gives (2b) for z=—z,. Writing out the real (3a) ad
imaginary (3b) part of the Maxwell equations (3a,b), it is also easy to prove

Theorem B. If the equations

Re E(z,r)=Re E(-z,7) {6a)
ImE(z,r)=—-Im(~z,7r) (65}
(6¢)

d(z,)=y(-z71)

are satisfied and if (3a) is satisfied at (zy,r,a;, t;) then (3
(~2z4, 11, @1, t;). We could show in this fashion

) is satisfied at

Theorem C. If the equations
7
flz,r)=f(z, —r), w(z, r)=—w(z, —r), oz, r)=¢(z, -r) (
. : at
are satisfied and if (2a) is satisfied at (zq,r,a;,#) then (2b) 18 satsfed
(ZI, =T, oy, tl)'
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Theorem D. If the equations

ReE(z N=Re E(z, —1), ImE(z,r)=—Im E(z, —71), oz, r)=¢(z,~r)
(8

we satisfied and if (3a) is satisfied at (zi,r;, 1, ;) then (3b) is satisfied at

{7y, —T1s @1 ty).

3, Examples

Guided by the above theorems, some simple solutions have been found. They are
displayed in table 1 {(a, b, c are real constants).

Solutions IIa,b,c are linked by duality rotations. To generalize II, leave y, ¢
unchanged but replace f, w by

f=r/w=r(8c2r+a+bln r).

Solutions II and I bear some resemblance to those given by Arbex and Som (1973),
however their A (their equation (2.23) X2) does not seem to satisfy their equation

{(2.11)+(2.12)).

4, Reflectional symmetry

Michalski and Wainwright (1975) demonstrate that invariance of the metric gy,
{k=1,2,3,4) under a continuous coordinate transformation does not always imply
the same invariance for the electromagnetic field tensor F;,. We now investigate in the
sume spirit the invariance of solutions satisfying (5) under the discrete transformation

Z’=~z, r=r, a'=a, =t 9

Specializing the definition of invariant tensors (Florides et al 1965, § 2) to (9) we
define any tensor Ty, (or T) to be invariant under the reflection (9) if

Tll(za r)=+T11(—Z, r): Tlv(z’ r)=“T1,,(—Z, r).’
Tu.v(z5 r) = +Tpv(_za r)7 (10)
Where u, v =2, 3, 4.
From (1) we find the nonzero gy to be
Bi=gp=—¢* g=wr-r’f ', o= —fw, g =fw’. (11)

By using (5) and (4) we find A, and thus e*, to be even in z; this together with
S5, 10, 11) shows that any metric satisfying (5) has reflectional symmetry.
For the investigation of the symmetry of F;, we need (Bonnor 1973)

4a = ¢,a (12a)

=(fe'r) e abc!!',c (12b)

;?Iue %b.c=1,2,3; and €™ is the permutation symbol with values +1 and 0. It
oWs from (12b) that ¥ cannot be a scalar (e.g. z2'= ~z>¢'(z) = —¥(2)).

Theorey, E. For solutions satisfying (5), Fy does not have reflectional symmétry;
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powever the duality rotation
F=2""—¢) - (13a)
3=2"(p+9) (13b)

results in a new Fy. (denoted by Fi) having this symmetry. We prove the second part of
this theorem. Using (13b) and (5¢) we have

V26 =¢(z,N+¥(z,1)=¢(z, )+ d(—2z7). (14a)

Thisiseven in z and we find with (12a) as required by (10) that F; is odd in z and F,, is
even. By (13a) and (5¢) we have

V2§ =9z, 1) = d(z, 1) = d(—2,1)~$(z,7) (14b)
" isodd in z. Hence, using (12b), (5a) and the fact that A is even gives
F* = (a function even in z) X <17,1 isevenin z

and
F'®=(a function even in z) X ¢, isodd in z,

as required by (10). From this and the reflectional symmetry of g, we find that the
remaining nonzero Fy (i.e. Fi3 and F3) satisfy (10) as well. This concludes the proof.
For example, F};, of solution Il¢, which was obtained from Ila by (13), has reflectional

symmetry.

5. Summary and possible physical significance

.In order to reduce the number of independent equations in (2) or (3) by one, we
mposed conditions (5) or (6). To apply (Sc) or (6¢), which assumes that ¢ is the mirror
image of ¢, in approximation methods, should be easy; if we expand ¢ as a Taylor series
itz =0, the series for ¢ is then immediately known. How to apply (5¢) in the search for
exact solutions is less obvious, but its usefulness in conjunction with other simplifying
ssumptions has been demonstrated by the ease with which the solutions of § 3 have
beenobtained. In § 4 we showed thata i satisfying (5) or (6) has reflectional symmetry
and ttfat there exists a duality rotation which yields an Fj with this symmetry.

It is well known in special relativity that the Maxwell tensor for a magnetic and an
tlectric monopole at rest (say at (z, r) = (d, 0) and (—d, 0) respectively) corresponds to
el"'CtTO{Hagn_etic energy rotating about the z axis. We therefore expect that such a
stem in general relativity corresponds to a solution of (2) satisfying (5) with w # 0. If
w %il!d find such solutions we would know under which circumstances electric and
magﬂetl‘c monopoles coexist. This might provide us with clues in the search for
Mignetic monopole particles.
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