Stationary axially-symmetric electrovac fields with reflectional symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9709
(http://iopscience.iop.org/0305-4470/9/5/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:17

Please note that terms and conditions apply.

Stationary axially-symmetric electrovac fields with reflectional symmetry

Edgar Pechlaner
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

Received 2 September 1975, in final form 31 December 1975

Abstract

The Einstein-Maxwell equations for axially-symmetric stationary fields are investigated. The existence of a class of solutions having reflectional symmetry is predicted and examples are given.

1. The field equations and introduction

We study the Einstein-Maxwell equations for axially-symmetric stationary systems in the two forms given by Bonnor (1973) and Ernst (1968). We write the metric in the form

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{e}^{\lambda}\left(\mathrm{d} z^{2}+\mathrm{d} r^{2}\right)-f^{-1} r^{2} \mathrm{~d} \alpha^{2}+f(\mathrm{~d} t-w \mathrm{~d} \alpha)^{2} . \tag{1}
\end{equation*}
$$

Allfunctions in this paper depend on z and r only. The electric and magnetic potentials aredenoted by $\phi \equiv A_{4}$ and $\psi \equiv A_{3}^{\prime}$, respectively. The four functions ψ, ϕ, w, f are to be found either from the four equations

$$
\begin{align*}
& \nabla^{2} \psi=f^{-1}\left(f_{1} \psi_{1}+f_{2} \psi_{2}\right)+r^{-1} f\left(w_{2} \phi_{1}-w_{1} \phi_{2}\right) \tag{2a}\\
& \nabla^{2} \phi=f^{-1}\left(f_{1} \phi_{1}+f_{2} \phi_{2}\right)+r^{-1} f\left(w_{1} \psi_{2}-w_{2} \psi_{1}\right) \tag{2b}\\
& \nabla^{2} w-2 r^{-1} w_{2}=-2 f^{-1}\left(f_{1} w_{1}+f_{2} w_{2}\right)+4 f^{-2}\left(\psi_{1} \phi_{2}-\psi_{2} \phi_{1}\right) \tag{2c}\\
& \nabla^{2} f-f^{-1}\left(f_{1}^{2}+f_{2}^{2}\right)=2\left(\phi_{1}^{2}+\phi_{2}^{2}+\psi_{1}^{2}+\psi_{2}^{2}\right)-r^{-2} f^{3}\left(w_{1}^{2}+w_{2}^{2}\right) \tag{2d}
\end{align*}
$$

Where

$$
(z, r, \alpha, t) \equiv\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad \text { and } \quad \nabla^{2} \equiv\left(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right),
$$

Offom the two complex Ernst equations

$$
\begin{align*}
& \left(\operatorname{Re} E+|F|^{2}\right) \nabla^{2} F=\left(\nabla E+2 F^{*} \nabla F\right) \cdot \nabla F \tag{3a,b}\\
& \left(\operatorname{Re} E+|F|^{2}\right) \nabla^{2} E=\left(\nabla E+2 F^{*} \nabla F\right) \cdot \nabla E \tag{3c,d}
\end{align*}
$$

where

$$
\nabla \equiv\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial r}\right), \quad F \equiv \phi+\mathrm{i} \psi \quad(\mathrm{i}=\sqrt{ }-1)
$$

and E is another complex function, linked with ψ, ϕ, w, f. After (2) or (3) are solved, λ is obtained from

$$
\begin{array}{r}
\lambda_{1}=-f^{-1} f_{1}+f^{-2} f_{1} f_{2}-4 r f^{-1}\left(\phi_{1} \phi_{2}+\psi_{1} \psi_{2}\right)-r^{-1} f^{2} w_{1} w_{2} \\
\lambda_{2}=-f^{-1} f_{2}+\frac{1}{2} r f^{-2}\left(f_{2}^{2}-f_{1}^{2}\right)+2 r f^{-1}\left(\phi_{1}^{2}-\phi_{2}^{2}+\psi_{1}^{2}-\psi_{2}^{2}\right)+\frac{1}{2} r^{-1} f^{2}\left(w_{1}^{2}-w_{2}^{2}\right) . \tag{4b}
\end{array}
$$

In order to find solutions of (2) or (3), it is customary to make simplifying assumptions. To assume, for instance, that the four functions occurring in (3) are functions of $r^{2}+n z^{2}$ reduces (3) to a system of ordinary differential equations if and only if $n=0,1$ or -2 . In this paper we make assumptions which reduce the number of equations and unknown functions from four to three.

2. Simplifying assumptions

Theorem A. If the equations

$$
\begin{align*}
& w(z, r)=w(-z, r) \tag{5a}\\
& f(z, r)=f(-z, r) \tag{5b}\\
& \phi(z, r)=\psi(-z, r) \quad(\Rightarrow \psi(z, r)=\phi(-z, r)) \tag{5c}
\end{align*}
$$

are satisfied, and if - $2 a$) is satisfied at $\left(z_{1}, r_{1}, \alpha_{1}, t_{1}\right)$ then ($2 b$) is satisfied at $\left(-z_{1}, \alpha_{1}, r_{1}, t_{1}\right)$. Equation ($5 c$) allows us, at least in principle, to express ϕ in terms of ϕ and we have thus three equations ($2 a, c, d$) for the three unknowns ψ, w, f. The proof is simple. By $(5 a)$ we have that w is an even function of z, hence w_{1} is odd and w_{2} is even in z; and the same applies to f. Similarly

$$
\phi(z, r)=\psi(-z, r) \Rightarrow \quad \phi_{1}(z, r)=-\psi_{1}(-z, r), \phi_{2}(z, r)=\psi_{2}(-z, r), \text { etc. }
$$

Calculating (2a) for $z=z_{1}$ gives (2b) for $z=-z_{1}$. Writing out the real ($3 a$) and imaginary ($3 b$) part of the Maxwell equations ($3 a, b$), it is also easy to prove

Theorem B. If the equations

$$
\begin{align*}
& \operatorname{Re} E(z, r)=\operatorname{Re} E(-z, r) \tag{6a}\\
& \operatorname{Im} E(z, r)=-\operatorname{Im}(-z, r) \tag{66}\\
& \phi(z, r)=\psi(-z, r) \tag{6c}
\end{align*}
$$

are satisfied and if ($3 a$) is satisfied at $\left(z_{1}, r_{1}, \alpha_{1}, t_{1}\right)$ then $(3 b)$ is satisfied at $\left(-z_{1}, r_{1}, \alpha_{1}, t_{1}\right)$. We could show in this fashion

Theorem C. If the equations
$f(z, r)=f(z,-r), \quad w(z, r)=-w(z,-r), \quad \phi(z, r)=\psi(z,-r)$
are satisfied and if (2a) is satisfied at $\left(z_{1}, r_{1}, \alpha_{1}, t_{1}\right)$ then (2b) is satisfied at $\left(z_{1},-r_{1}, \alpha_{1}, t_{1}\right)$.

Theorem D. If the equations
$\operatorname{Re} E(z, r)=\operatorname{Re} E(z,-r), \quad \operatorname{Im} E(z, r)=-\operatorname{Im} E(z,-r), \quad \phi(z, r)=\psi(z,-r)$
are satisfied and if ($3 a$) is satisfied at $\left(z_{1}, r_{1}, \alpha_{1}, t_{1}\right)$ then ($3 b$) is satisfied at $\left(z_{1},-r_{1}, \alpha_{1}, t_{1}\right)$.

3. Examples

Guided by the above theorems, some simple solutions have been found. They are displayed in table 1 (a, b, c are real constants).

Solutions $I I a, b, c$ are linked by duality rotations. To generalize II, leave ψ, ϕ unchanged but replace f, w by

$$
f=r / w=r\left(8 c^{2} r+a+b \ln r\right)
$$

Solutions II and III bear some resemblance to those given by Arbex and Som (1973), however their λ (their equation $(2.23) \times 2$) does not seem to satisfy their equation $(2.11)+(2.12))$.

4. Reflectional symmetry

Michalski and Wainwright (1975) demonstrate that invariance of the metric $g_{i k}$, ($h k=1,2,3,4$) under a continuous coordinate transformation does not always imply the same invariance for the electromagnetic field tensor $F_{i k}$. We now investigate in the same spirit the invariance of solutions satisfying (5) under the discrete transformation

$$
\begin{equation*}
z^{\prime}=-z, \quad r^{\prime}=r, \quad \alpha^{\prime}=\alpha, \quad t^{\prime}=t . \tag{9}
\end{equation*}
$$

Specializing the definition of invariant tensors (Florides et al 1965, §2) to (9) we define any tensor $T_{i k}$ (or $T^{i k}$) to be invariant under the reflection (9) if

$$
\begin{array}{ll}
T_{11}(z, r)=+T_{11}(-z, r), & T_{1 \nu}(z, r)=-T_{1 \nu}(-z, r), \\
T_{\mu \nu}(z, r)=+T_{\mu \nu}(-z, r), \tag{10}
\end{array}
$$

where $\mu, \nu=2,3,4$.
From (1) we find the nonzero $g_{i k}$ to be

$$
\begin{equation*}
g_{11}=g_{22}=-e^{\lambda}, \quad g_{33}=f w^{2}-r^{2} f^{-1}, \quad g_{34}=-f w, \quad g_{44}=f w^{2} . \tag{11}
\end{equation*}
$$

By using (5) and (4) we find λ, and thus e^{λ}, to be even in z; this together with ($5 a, b, 10,11$) shows that any metric satisfying (5) has reflectional symmetry.

For the investigation of the symmetry of $F_{i k}$ we need (Bonnor 1973)

$$
\begin{align*}
& F_{4 a}=\phi_{, a} \tag{12a}\\
& F^{a b}=\left(f \mathrm{e}^{\lambda} r\right)^{-1} \epsilon^{a b c} \psi_{, c} \tag{12b}
\end{align*}
$$

Where $a, b, c=1,2,3$; and $\epsilon^{a b c}$ is the permutation symbol with values ± 1 and 0 . It follows from (12b) that ψ cannot be a scalar (e.g. $z^{\prime}=-z \Rightarrow \psi^{\prime}\left(z^{\prime}\right)=-\psi(z)$).
Theorem E. For solutions satisfying (5), $F_{i k}$ does not have reflectional symmetry;
Table 1.

Solution	Example to theorem	ψ	ϕ	w	f	λ	$\operatorname{Re} E$	Im E
I	A, B, C, D	$a\left(r^{2}+z^{2}\right)^{1 / 2}$	$a\left(r^{2}+z^{2}\right)^{1 / 2}$	0	$-2 a^{2} z^{2}$	$-2 \ln \left(r^{2} / z\right)+z \mid+\mathrm{i} \pi$	$-2 a^{2}\left(r^{2}+2 z^{2}\right)$	0
II a	A, B	$c(r-z)$	$c(r+z)$	$\left(8 c^{2} r\right)^{-1}$	$8 c^{2} r^{2}$	$-\frac{1}{2} \ln r$	$2 c^{2}\left(3 r^{2}-z^{2}\right)$	$-4 c^{2} r z$
II b	C, D	$c(-r-z)$	$c(r-z)$	$\left(8 c^{2} r\right)^{-1}$	$8 c^{2} r^{2}$	$-\frac{1}{2} \ln r$	$2 c^{2}\left(3 r^{2}-z^{2}\right)$	$-4 c^{2} r z$
II c	E	$-\sqrt{2} c z$	$\sqrt{2} c r$	$\left(8 c^{2} r\right)^{-1}$	$8 c^{2} r^{2}$	$-\frac{1}{2} \ln r$	$2 c^{2}\left(3 r^{2}-z^{2}\right)$	$-4 c^{2} r z$
III	A, B	$\frac{3}{2}(r b)^{2 / 3}$	$\frac{3}{2}(r b)^{2 / 3}$	$3 r^{2 / 3} b^{-1 / 3}$	$(r b)^{2 / 3}$	$-9(r b)^{2 / 3}-\frac{4}{9} \ln r$	$(r b)^{2 / 3}-\frac{9}{2}(r b)^{4 / 3}$	$2 b z$

however the duality rotation

$$
\begin{align*}
& \bar{\psi}=2^{-1 / 2}(\psi-\phi) \tag{13a}\\
& \bar{\phi}=2^{-1 / 2}(\psi+\phi) \tag{13b}
\end{align*}
$$

results in a new $F_{i k}$ (denoted by $F_{i k}$) having this symmetry. We prove the second part of this theorem. Using (13b) and ($5 c$) we have

$$
\begin{equation*}
\sqrt{ } 2 \bar{\phi}=\phi(z, r)+\psi(z, r)=\phi(z, r)+\phi(-z, r) . \tag{14a}
\end{equation*}
$$

This is even in z and we find with (12a) as required by (10) that F_{41} is odd in z and F_{42} is even. By (13a) and ($5 c$) we have

$$
\begin{equation*}
\sqrt{2} \bar{\psi}=\psi(z, r)-\phi(z, r)=\phi(-z, r)-\phi(z, r) \tag{14b}
\end{equation*}
$$

is odd in z. Hence, using (12b), (5a) and the fact that λ is even gives

$$
F^{23}=(\text { a function even in } z) \times \bar{\psi}_{, 1} \quad \text { is even in } z
$$

and

$$
F^{13}=(\text { a function even in } z) \times \bar{\psi}_{.2} \quad \text { is odd in } z
$$

as required by (10). From this and the reflectional symmetry of $g_{i k}$ we find that the remaining nonzero $F_{i k}$ (i.e. F_{13} and F_{23}) satisfy (10) as well. This concludes the proof. For example, $F_{i k}$ of solution IIc, which was obtained from II a by (13), has reflectional symmetry.

5. Summary and possible physical significance

In order to reduce the number of independent equations in (2) or (3) by one, we imposed conditions (5) or (6). To apply ($5 c$) or ($6 c$), which assumes that ϕ is the mirror image of ψ, in approximation methods, should be easy; if we expand ϕ as a Taylor series at $z=0$, the series for ψ is then immediately known. How to apply ($5 c$) in the search for exact solutions is less obvious, but its usefulness in conjunction with other simplifying assumptions has been demonstrated by the ease with which the solutions of $\S 3$ have been obtained. In $\S 4$ we showed that a $g_{i k}$ satisfying (5) or (6) has reflectional symmetry and that there exists a duality rotation which yields an $F_{i k}$ with this symmetry.
It is well known in special relativity that the Maxwell tensor for a magnetic and an electric monopole at rest (say at $(z, r)=(d, 0)$ and $(-d, 0)$ respectively) corresponds to electromagnetic energy rotating about the z axis. We therefore expect that such a system in general relativity corresponds to a solution of (2) satisfying (5) with $w \neq 0$. If we could find such solutions we would know under which circumstances electric and magnetic monopoles coexist. This might provide us with clues in the search for magnetic monopole particles.

References

[^0]
[^0]: Arbex N and Som M M 1973 Nuovo Cim. B 13 49-54
 E Boanor W B 1973 Commun. Math. Phys. 34 77-83
 Erast FJ 1968 Phys. Rev. 168 1415-7
 Florides P S, Synge J L and Yukawa T 1965 Proc. R. Soc. A 284 32-9
 Michalkki H and Wainwright J 1975 Gen. Rel. Grav. 6 289-318

