
Stationary axially-symmetric electrovac fields with reflectional symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 709

(http://iopscience.iop.org/0305-4470/9/5/007)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


, ,w~:  Math. Gen., Vol. 9. NO. 5, 1976. Printed in Great Britain. @ 1975 

Edgar Pechlaner 
Department of Mathematics, Simon Fraser University, Bumaby, British Columbia VSA 
1S6, Canada 

Received 2 September 1975, in final form 31 December 1975 

Abstract. The Einstein-Maxwell equations for axiaily-symmetric, stationary fields are 
investigated. The existence of a class of solutions having reflectional symmetry is predicted 
and examples are given. 

1. lbe hieid equations and introduction 

We study the Einstein-Maxwell equations for axially-symmetric stationary systems in 
the two forms given by Bonnor (1973) and Ernst (1968). We k i t e  the metric in the 
form 

ds2= -eh ( d z 2 + d r 2 ) - f 1 r 2  da2+f (d t -  w da)’. (1) 
ufunctions in this paper depend on z and T only. The electric and magnetic potentials 
aredenoted by = A4 and $ =A;, respectively. The four functions $, 4, w, fare to be 
found either from the four equations 

V2$ =rlcfi$l +f2$22)fr-lf(WZ~l--W1~2) @ a )  

vz4 = r 1 C f 1 9 1 + f 2 ~ 2 ) + ~ - l f ( ~ * ( C / 2 - W 2 1 ( 1 1 )  (26) 

v 2 W  - 21-’W2 = -2f’Cfi w1 +f2wz) +4rf2($1$2- #24d 
V2f-f’(f? +f;) = 2(& + &+ 4; + &) - Pf3( w: + w;, 

(2c)  

( 2 4  
where 

( z , ~ , ( Y , ~ ) ~ ( x ~ , ~ ~ , x ~ , x ~ )  and 

‘hm the two complex Ernst equations 

(Re E + IF(2)V2F = (VE + 2 P V F )  . V F  

(Re E + IFI2)V2E = (VE + 2F*VF) 
*re 
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and E is another complex function, linked with $, 4, w, f- After ( 2 )  or (3) are solved,A is 
obtained from 

In order to find solutions of (2 )  or (3 ) ,  it is customary to make shPlifylng 
assumptions. To assume, for instance, that the four functions occurring in (3) ue 
functions of r z  + nz2 reduces (3 )  to a system of ordinary differential equationsifmdody 
if n = 0, 1 or -2. In this paper we make assumptions which reduce the number d 
equations and unknown functions from four to three. 

2. simplifying assumptions 

Theorem A. If the equations 

are satisfied, and if - (2a)  is satisfied at (zl, r l ,  al, t l )  then (2b)  is satisfied at 
( -z l ,  al, r l ,  t l) .  Equation (5c) allows us, at least in principle, to express 4 intermof$ 
and we have thus three equations (2a,c,d) for the three unknowns 4, w, f. The proof is 
simple. By ( 5 2 )  we have that w is an even function of z, hence w1 isodd and w2iseven 
in z ; and the same applies to f. Similarly 

d(z, r )  = +(-z, &(z, r )  = -$l(-z, r),  q ~ z ,  r )  = ~ d - z ,  r), etc. 

Calculating ( 2 a )  for z = z1 gives (26 )  for z = -zl. Writing out the real (30) and 
imaginary (36)  part of the Maxwell equations (3a ,b) ,  it is also easy to prove 

Theorem B. If the equations 

Re E(  z,  r )  = Re E( - z, r )  

ImE(z, r ) =  - I m ( - z , r )  

b(z, r> = $( - z ,  r> 

are satisfied and if (3a) is satisfied at (zl, rl,  (Y,, t l )  then (3b)  is satisfied at 
(-21, r1, (YI ,  tl). We could show in this fashion 

Theorem C. If the equations 

f ( z ,  r )  =f(z, - r ) ,  w ( z ,  r )  = -w(z ,  - r ) ,  4(z ,  r )  = $(z, -r) 
* at 

are satisfied and if (2a) is satisfied at (zl, r l ,  al, tl) then (2b) is sa@ 
(z1, -r1, Q(1, t l ) .  
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3. EWPIm 

Guided by the above theorems, some simple solutions have been found. They are 
displayed in table 1 (a, b, c are real constants). 

Solutions IIab,c are linked by duality rotations. To generalize 11, leave ijr, 4 
unchanged but replace f, w by 

f=r /w=r(Sc2r+a+blnr ) .  

Solutions I1 and 111 bear some resemblance to those given by Arbex and Som (1973), 
however their A (their equation ( 2 . 2 3 ) ~ 2 )  does not seem to satisfy their equation 
((2.11)+(2.12)). 

A Reflectional symmetry 

Michalski and Wainwright (1975) demonstrate that invariance of the metric gik, 
(4 k = 1,2,3,4) under a continuous coordinate transformation does not always imply 
thestme invariance for the electromagnetic field tensor Ek. We now investigate in the 
samespirit the invariance of solutions satisfying (5) under the discrete transformation 

z’= -2, r’ = r, d = a ,  t’= t, (9) 
Specializing the definition of invariant tensors (Florides et a1 1965, $2) to (9) we 

&tine any tensor Tk (or Pk)  to be invariant under the reflection (9) if 

Tl I ( ~ 7  r )  = + Tl 1(-z, r ) ,  T I k  r )  = --TI~(-Z, r ) ,  

til=g22= -ehr g33 =fwz-r2f1, g34 = -fw g44 =fw2. (1 1) 
By using (5)  and (4) we find A, and thus eh7 to be even in z; this together with 

10,11) shows that any metric satisfying (5 )  has reflectional symmetry. 
Forthe investigation of the symmetry of F):k we need (Bonnor 1973) 

F4a = 47, ( 1 2 4  

Fb = ~e”r)-’Eabcijr,c (12b) 
*re 6 b,.c = 1,2,3;  and eabc is the permutation symbol with values f 1 and 0. It 
fo’owsfrom (12b) that IJ cannot be a scalar (e.g. z’ = - z 3 IJ‘(i“) = - @(Z)). 

brem E. For solutions satisfying (5),  does not have reflectional Symmetry; 



712 E Pechlaner 

2 2 2  

I l l  

N N N  

0 4 4 4 N  

N . e - 

a 



Stationary electrovac fields 713 

mdtsin a new Fik (denoted by Fik) having this symmetry. We prove the second part of 
thisbeorem. Using (13b) and (5c)  we have 

(14a) J2&=4(z ,  r)++(z, r)=+(z, r)++(-z ,  t). 

miseven in z and we find with ( 1 2 ~ )  as required by (10) that F41 is odd in t and F4* is 
even. By (13a) and (5c)  we have 

J ~ $ = J I ( z , ~ ) - ~ ( z , ~ ) = ( ~ ( - z ,  r)-(b(z, r )  (14b) 
isodd in z. Hence, using (1261, (5a) and the fact that A is even gives 

F~~ = (a function even in z> x $,] 

F13 = (a function even in z) X $,2 

is even in z 

is odd in z, 
and 

asrequired by (10). From this and the reflectional symmetry of gik we find that the 
remainingnonzero F i k  (i.e. Fl3 and F23) satisfy (10) as well. This concludes the proof. 
For example, Ck of solution IIc, which was obtained from IIa by (13), has reflectional 
symmetry. 

5. S " a r y  and possible physical sigaificance 

In order to reduce the number of independent equations in (2) or (3) by one, we 
imposed conditions (5 )  or (6). To apply (5c) or (6c) ,  which assumes that + is the mirror 
image of $, in approximation methods, should be easy; if we expand (b as a Taylor series 
atZ=O, the series for $ is then immediately known. How to apply (5c)  in the search for 
exact solutions is less obvious, but its usefulness in conjunction with other simplifying 
~ ~ P ~ s  has been demonstrated by the ease with which the solutions of 0 3 have 
hnobtained. In 3 4 we showed that a gik satisfying (5)  or (6)  has reflectional symmetry 
and that there exists a duality rotation which yields an F i k  with this symmetry. 

It is well known in special relativity that the Maxwell tensor for a magnetic and an 
ei@XriC monopole at rest (say at (2, r )  = (d, 0) and ( -d ,  0) respectively) corresponds to 
e'mOmagnetic energy rotating about the z axis. We therefore expect that such a 
system in general relativity corresponds to a solution of (2) satisfying (5) with w f 0. If 
we find such solutions we would know under which circumstances electric and 
wetic monopoles coexist. This might provide us with clues in the search for 
wetic monopole particles. 


